抛物线是指平面内与一定点和一定直线(定直线不经过定点)的距离相等的点的轨迹,其中定点叫抛物线的焦点,定直线叫抛物线的准线。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
有关切线、法线的几何性质
1,设抛物线上一点P的切线与准线相交于Q,F是抛物线的焦点,则PF⊥QF。且过P作PA垂直于准线,垂足为A,那么PQ平分∠APF。
2,过抛物线上一点P作准线的垂线PA,则∠APF的平分线与抛物线切于P。〈为性质(1)第二部分的逆定理〉从这条性质可以得出过抛物线上一点P作抛物线的切线的尺规作图方法。
3,设抛物线上一点P(P不是顶点)的切线与法线分别交轴于A、B,则F为AB中点。这个性质可以推出抛物线的光学性质,即经焦点的光线经抛物线反射后的光线平行于抛物线的对称轴。各种探照灯、汽车灯即利用抛物线(面)的这个性质,让光源处在焦点处以发射出(准)平行光。
4,设抛物线上除顶点外的点P的切线交轴于A,交顶点O的切线于B,则FB垂直平分PA,且FB与准线的交点M恰好是P在准线上的射影(即PM垂直于准线)。
5,抛物线的三条切线所围成的三角形,其外接圆经过焦点。即:若AB、AC、BC都是抛物线的切线,则ABCF四点共圆。
6,过抛物线外一点P作抛物线的两条切线,连接切点的弦与轴相交于A。又设P在轴上的射影为B,则O是AB中点。
7,若抛物线与一个三角形的三条边(所在直线)都相切,则准线通过该三角形的垂心。
有关弦的几何性质
1,焦点弦两端的切线互相垂直,并且垂足在准线上。
2,过焦点弦的端点A、B作准线的垂线,垂足分别为M、N。设A、B处的切线相交于P,则P是MN中点,并且以AB为直径的圆切准线于P。
3,若抛物线的两条焦点弦相等,连接这两条焦点弦的中点,则连线与轴垂直。
4,抛物线的一条弦AB与轴相交于P(不一定是焦点F),过A、B分别作轴的垂线AM、BN,抛物线顶点为O,则OP²=AM*BN。