正态分布
normal distribution
一种概率分布.正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 ).遵从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散.正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点.它的形状是中间高两边低 ,图像是一条位于x轴上方的钟形曲线.当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1).μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布.多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布.
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到.C.F.高斯在研究测量误差时从另一个角度导出了它.P.S.拉普拉斯和高斯研究了它的性质.
生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述.例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等.一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理).从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等.
正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线.
1.正态分布
若 的密度函数(频率曲线)为正态函数(曲线)
(3-1)
则称 服从正态分布,记号 .其中 、 是两个不确定常数,是正态分布的参数,不同的 、不同的 对应不同的正态分布.
正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1.
2.正态分布的特征
服从正态分布的变量的频数分布由 、 完全决定.
(1) 是正态分布的位置参数,描述正态分布的集中趋势位置.正态分布以 为对称轴,左右完全对称.正态分布的均数、中位数、众数相同,均等于 .
(2) 描述正态分布资料数据分布的离散程度,越大,数据分布越分散,越小,数据分布越集中.也称为是正态分布的形状参数,越大,曲线越扁平,反之,越小,曲线越瘦高.
(二)标准正态分布
1.标准正态分布是一种特殊的正态分布,标准正态分布的 ,,通常用 (或Z)表示服从标准正态分布的变量,记为 N(0,).
2.标准化变换:,此变换有特性:若 服从正态分布 ,则 就服从标准正态分布,故该变换被称为标准化变换.
3.标准正态分布表
标准正态分布表中列出了标准正态曲线下从-∞到 范围内的面积比例 .
(三)正态曲线下面积分布
1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布).不同 范围内正态曲线下的面积可用公式3-2计算.
(3-2)
.
2.几个重要的面积比例
轴与正态曲线之间的面积恒等于1.正态曲线下,横轴区间 内的面积为68.27%,横轴区间 内的面积为90.00%,横轴区间 内的面积为95.00%,横轴区间 内的面积为99.00%.
(四)正态分布的应用
某些医学现象,如同质群体的身高、红细胞数、血红蛋白量,以及实验中的随机误差,呈现为正态或近似正态分布;有些指标(变量)虽服从偏态分布,但经数据转换后的新变量可服从正态或近似正态分布,可按正态分布规律处理.其中经对数转换后服从正态分布的指标,被称为服从对数正态分布.
1.估计频数分布 一个服从正态分布的变量只要知道其均数与标准差就可根据公式(3-2)估计任意取值 范围内频数比例.
2.制定参考值范围
(1)正态分布法 适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标.
(2)百分位数法 常用于偏态分布的指标.表3-1中两种方法的单双侧界值都应熟练掌握.
表3-1 常用参考值范围的制定
概率
(%) 正态分布法 百分位数法
双侧 单 侧 双侧 单侧
下 限 上 限 下 限 上 限
90
95
99
3.质量控制:为了控制实验中的测量(或实验)误差,常以 作为上、下警戒值,以 作为上、下控制值.这样做的依据是:正常情况下测量(或实验)误差服从正态分布.
4.正态分布是许多统计方法的理论基础.检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布.许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的.
满足什么条件服从正态分布
当现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的.但是最好有实验数据,做正态性检测,才能准确的判断粗略判断的话你说那三个都是(正常情况下,比如第一个球队里不能都是超人,第二个那人不能是吸血鬼之类),因为这些事情的结果受到很多条件的限制,比如球队那个会受到比方说天气、球员发挥状况、对手球队的状况、甚至这支球队使用的球鞋的性能等等,可以列举出大量的对结果有影响的微小因素,那么整体就近似服从正态分布。你应该记得引入正态分布的实验是一个个小球往下滚碰到钉子的,这个实验之所以说是近似服从正态分布就是因为碰到每个钉子后的结果都可以看做微小分布,所以大量微小因素的影响形成累积,从而导致结果服从正态分布。当然,精确的判断要借助正态性检验,作出正态概率图进行检验,这就要专业知识和软件咯,如果你有兴趣可以再去查查,统计学里的。
Y均服从正态分布
a不一定大于b。
a与b之间没有大小的限制
如果X~N(μ1,σdao1²)
Y~N(μ2,σ2²)
那么按照基本公式
aX-bY服从的就是正态分布
N(aμ1-bμ2,a²σ1²+b²σ2²)
扩展资料:
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
参考资料来源:百度百科-正态分布
则X-Y
根据题意得,x+3=0,y-2=0,
解得x=-3,y=2,
∴x-y=-3-2=-5.
故答案为:-5.
正态分布中的σ和u怎么算
求正态分布中的σ公式:u=(x-μ)/σ。正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution),最早由棣莫弗(AbrahamdeMoivre)在求二项分布的渐近公式中得到。
在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(BinomialDistribution)。
服从正态分布什么意思
正态分布的通俗概念:如果把数值变量资料编制频数表后绘制频数分布图(又称直方图,它用矩形面积表示数值变量资料的频数分布,每条直条的宽表示组距,直条的面积表示频数(或频率)大小,直条与直条之间不留空隙。),
若频数分布呈现中间为最多,左右两侧基本对称,越靠近中间频数越多,离中间越远,频数越少,形成一个中间频数多,两侧频数逐渐减少且基本对称的分布,那一般认为该数值变量服从或近似服从数学上的正态分布。
扩展资料:
定理
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。若
服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)
参考资料:百度百科-正态分布